Synthesis and Structure of $\mathrm{Cu}_{5}(\mathrm{BTA})_{6}\left(\mathbf{t}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$, a Mixed-Valent Copper-Nitrogen Cluster Containing η^{3}-Benzotriazolate

Vicky L. Himes ${ }^{\dagger}$

Department of Chemistry
The Catholic University of America
Washington, D.C. 20064
National Bureau of Standards
Washington, D.C. 20234

Alan D. Mighell*
National Measurement Laboratory
National Bureau of Standards
Washington, D.C. 20234
Allen R. Siedle*

3M Central Research Laboratories
 St. Paul, Minnesota 55101

Received October 1, 1980
Protection of metals with reactive materials capable of forming surface-phase coordination compounds is an area of chemistry which is of considerable scientific and technological importance. In view of the extensive use of benzotriazole as a corrosion inhibitor for copper and its alloys, ${ }^{1}$ it is remarkable that, to our knowledge, no copper-benzotriazole complex has been structurally characterized by X-ray diffraction. We report the synthesis and crystal structure of a neutral, highly symmetric complex containing a three-dimensional copper-nitrogen cluster formed by the coordination of η^{3}-benzotriazolate ${ }^{2}$ to copper(I) and copper(II). The central cluster is composed of interconnected copper-nitrogen cycles (azametallocycles) which vary in size and spatial orientation.

The reaction of copper(I) thiophenoxide, benzotriazole, and alkyl isocyanides in dichloromethane at room temperature produces $\mathrm{Cu}_{5}(\mathrm{BTA})_{6}(\mathrm{RNC})_{4}[\mathrm{BTA}=$ benzotriazolate $(1-)]$. Since the benzotriazolate ion has a charge of -1 , the pentacopper compounds are mixed-valent materials which contain four $\mathrm{Cu}(\mathrm{I})$ ions and one $\mathrm{Cu}(\mathrm{II})$ ion. ${ }^{3}$ The reaction does not occur in the absence of air. Evidently, oxygen oxidizes some of the $\mathrm{Cu}(\mathrm{I})$ to Cu (II), which acts as a template for the assembly of the rather complex product. The rate of reaction can be controlled by regulating the partial pressure of oxygen and, in this way, redorange crystals of $\mathrm{Cu}_{5}(\mathrm{BTA})_{6}\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$ suitable for X-ray analysis were obtained. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{60} \mathrm{Cu}_{5} \mathrm{~N}_{22}$: C, 49.49; H, 4.45; Cu, 23.38; N, 22.68; S, 0.0. Found: C, 49.3; H, 4.4; $\mathrm{Cu}, 23.8 ; \mathbf{N}, 22.7 ; \mathrm{S},<0.3$. The infrared spectrum shows a strong band at $2140 \mathrm{~cm}^{-1}$ due to tert-butyl isocyanide coordinated to the metal. This complex crystallizes in the tetragonal crystal system, space group $P \overline{4} 2{ }_{1} c, a=13.836$ (4) $\AA, c=16.686$ (4) $\AA, Z=2$, $D_{\text {calcd }}=1.413, D_{\text {obsd }}=1.41$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$ (flotation). A total of 1196 unique reflections were measured on an automated four-circle diffractometer, using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$) and the $\theta-2 \theta$ scan mode in the range $3.0 \leq 2 \theta$ $\leq 45.0^{\circ}$. Intensity data were corrected for Lorentz and polarization effects but not for absorption (crystal size $=0.10 \times 0.11$ $\times 0.11 \mathrm{~mm}, \mu=16.9 \mathrm{~cm}^{-1}$). The positions of the two independent copper atoms were determined by direct methods (MULTAN) ${ }^{4}$ and

[^0]

Figure 1. Structure of $\mathrm{Cu}_{5}(\mathrm{BTA})_{6}\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$ viewed down a crystallographic 4 axis (parallel to the z axis of the unit cell). For clarity, the benzene moieties of the axially coordinated BTA ligands, as well as the entire complex at the origin, have been omitted. ${ }^{20}$

Figure 2. Perspective drawing showing the labeling scheme used. The central nitrogen atoms of the four equatorial BTA ligands illustrated in Figure 1 are oriented to form a plane approximately normal to the plane of the page. Unique atoms are labeled only with atom type and number, while the letters $b-\mathrm{d}$ refer to atoms in the following equivalent positions: (b) $1-y, x, 1-z$; (c) $1-x, 1-y, z$; (d) $y, 1-x, 1-z$. Selected interatomic distances and angles follow. Distances: $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2=3.638$ (2), $\mathrm{Cu} 2-\mathrm{N} 1=2.241$ (13), $\mathrm{Cu} 2-\mathrm{N} 4=2.085$ (16), $\mathrm{Cu} 1-\mathrm{N} 3=2.013$ (14), $\mathrm{Cul}-\mathrm{N} 5=2.087$ (12), $\mathrm{Cul}-\mathrm{N} 2 \mathrm{~b}=2.024$ (12), $\mathrm{Cul}-\mathrm{ClO}=1.882$ (17) A. Angles: $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 5=95.3$ (5), $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 0=121.2$ (6), $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2 \mathrm{~b}=98.3$ (5), $\mathrm{N} 5-\mathrm{Cul}-\mathrm{Cl} 0=117.0$ (6), N5-Cul-N2b= 94.7 (5), $\mathrm{C} 10-\mathrm{Cul}-\mathrm{N} 2 \mathrm{~b}=123.9$ (6), $\mathrm{Cu} 1-\mathrm{Cl} 0-\mathrm{N} 6=175.8$ (1.6) ${ }^{\circ}$. The $\mathrm{Cl} 1-\mathrm{C}$ bond lengths (mean value $=1.44 \AA$) are shorter than normal, presumably due to the high thermal motion of the methyl groups.
were verified in a three-dimensional Patterson map. ${ }^{5}$ Successive least-squares refinements and Fourier syntheses revealed the positions of the remaining nonhydrogen atoms. Full-matrix least-squares refinement ${ }^{6}$ gave a conventional agreement factor $R=0.063$ for 903 observed reflections with $I \geqslant 3 \sigma(I) .{ }^{7}$
The crystal structure consists of neutral complexes with crystallographic $\overline{4}$ symmetry in which an octahedrally coordinated copper(II) ion is surrounded by four tetrahedrally coordinated copper(I) ions. Tridentate BTA ligands bridge each copper(I)

[^1]ion to three symmetry-related copper(I) ions and to the central copper(II) ion. Figure 1 gives a view of the complex down a $\overline{4}$ axis (parallel to the z axis of the unit cell). The labeling scheme and selected interatomic distances and angles are given in Figure 2.

There are two complexes in the unit cell with the central Cu 2 ions in special positions ($0,0,0$) and ($1 / 2,1 / 2,1 / 2$) with $\overline{4}$ symmetry. Each Cu2 ion is octahedrally coordinated to four equatorial and two axial BTA ligands. The four equatorial BTA ligands illustrated in Figure 1 occupy general positions in the unit cell; their central nitrogen atoms (N1 positions) lie 0.005 (13) \AA from the $z=1 / 2$ plane ($z=0$ plane for the complex at the origin) and are coplanar with Cu 2 . Because N 4 lies on a crystallographic 4 axis, a twofold axis relates the two halves of the axial BTA ligands. The central Cu 2 ion is also surrounded by four Cu 1 ions which lie $2.02 \AA$ alternately above and below the Cu 2 basal plane (i.e., the plane defined by Cu 2 and the four N 1 atoms). The four equatorial BTA ligands define planes (average deviation $=0.008$ \AA; maximum deviation $=0.017 \AA$ for C 4) which make acute angles of 41.7° with the Cu 2 basal plane. Because of symmetry considerations, the two planes defined by the axial BTA ligands (average deviation $=0.006 \AA$; maximum deviation $=0.014 \AA$ for C9) are normal to the Cu 2 basal plane.

The stereochemistry about Cu 2 is unusual in that it is an undistorted octahedron of a compressed form. Cu2 is coordinated to four equatorial and two axial BTA ligands at the N1 and N4 positions, respectively (Figure 2). While the two Cu2-N4 bond distances are typical, the four $\mathrm{Cu} 2-\mathrm{N} 1$ distances are longer than those usually found for nitrogen coordinated to copper(II). ${ }^{8,9}$ Similar copper(II)-nitrogen distances have been observed in $\mathrm{Cu}(\text { dien })_{2}\left(\mathrm{NO}_{3}\right)_{2}{ }^{10}$ and $\mathrm{Cu}(\mathrm{V})_{2}(\mathrm{MEEN}),{ }^{11}$ compounds in which the copper(II) ion has distorted, compressed octahedral geometry.
The coordination geometry about Cu 1 is approximately tetrahedral but, as shown in Figure 2, there are significant deviations from the ideal angles. Cu 1 is coordinated to one tert-butyl isocyanide ligand and to three different BTA ligands (two equatorial, one axial) at the N2, N3, and N5 positions. The Cu1-C10 distance of $1.882(17) \AA$ and $\mathrm{Cu} 1-\mathrm{C} 10-\mathrm{N} 6$ angle of $175.8(1.6)^{\circ}$ are in general agreement with the respective values of 1.81 (15) \AA and $180(2)^{\circ}$ found for $\mathrm{CuI}\left(\mathrm{CNCH}_{3}\right){ }^{12}$ The coordination distances to Cul are close to those reported for copper(I)-cyanide complexes in which $\mathrm{Cu}-\mathrm{N}$ distances are typically $2.0 \AA$ and $\mathrm{Cu}-\mathrm{C}$ distances are approximately $1.9 \AA$ with a nearly linear $\mathrm{Cu}-\mathrm{C}-\mathrm{N}$ angle. ${ }^{13,14}$
As a tridentate ligand, BTA is involved in two types of cop-per-nitrogen-copper bridges. Bridging between Cu 2 and Cu 1 is accomplished via the central and an adjacent nitrogen atom of a BTA ligand. The four symmetry-related Cu 1 ions are bridged by the two nitrogen atoms adjacent to the central nitrogen of a BTA ligand in a manner analogous to the imidazolate bridge in $\left[\mathrm{Cu}_{2} \text { (bpim) (im) }\right]_{2}\left(\mathrm{NO}_{3}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{15}$ The axial BTA ligands bridge two Cu 1 ions situated on the same side of the Cu 2 basal plane, while the equatorial BTA ligands bridge Cu 1 ions on opposite sides of the Cu 2 basal plane.

Reference to Figure 1 shows that $\mathrm{Cu}_{5}(\mathrm{BTA})_{6}\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$
(8) Hämälāinen, R.; Turpeinen, U.; Ahlgrên, M. Acta Crystallogr., Sect. B 1979, 35, 2408-10.
(9) van Niekerk, J. C.; Nassimbeni, L. R. Acta Crystallogr., Sect. B 1979, $35,1221-3$.
(10) dien $=$ diethylenetriamine. Stephens, F. S. J. Chem. Soc. A 1969, 883-90.
(11) $\mathrm{V}=4$-formyl-2-methoxyphenolato, MEEN $=$ tetramethylethylenediamine. Greenhough, T. J.; Ladd, M. F. C. Acta Crystallogr., Sect. B 1978, 34, 2744-52.
(12) Fisher, P. J.; Taylor, N. E.; Harding, M. M. J. Chem. Soc. 1960, 2303-9.
(13) Vrabel, V.; Garaj, J.; Kutschabsky, L. Acta Crystallogr., Sect. B 1979, 35, 357-60.
(14) Williams, R. J.; Cromer, D. T.; Larson, A. C. Acta Crystallogr., Sect. B 1971, 27, 1701-6.
(15) bpim $=4,5$-bis [[[2-(2-pyridyl)ethyl]imine] methyl] imidazolate, im = imidazolate. Kolks, G.; Frihart, C. R.; Rabinowitz, H. N.; Lippard, S. J. J. Am. Chem. Soc. 1976, 98, 5720-1.
contains a $\mathrm{Cu}_{4} \mathrm{~N}_{12}$ ring, which we refer to as an azametallocyclic ring. The view of the complex presented in Figure 1 suggests a striking resemblance to a phthalocyanine; however, $\mathrm{Cu}_{5}-$ (BTA) $6\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$ is far more complex and fundamentally different. There are two additional $\mathrm{Cu}_{4} \mathrm{~N}_{12}$ rings, ${ }^{16}$ as well as many larger and smaller azametallocyclic rings, which may be defined in this three-dimensional complex. Unlike the $\mathrm{C}_{8} \mathrm{~N}_{8}$ macrocycle in phthalocyanine, each $\mathrm{Cu}_{4} \mathrm{~N}_{12}$ ring is nonplanar, with the four copper(I) ions in a ruffled arrangement. Thus, conjugation between the BTA anions and their coordinated copper(I) is probably severely inhibited because of the tetrahedral geometry about copper(I). In this regard, the established architecture for $\mathrm{Cu}_{5^{-}}$ (BTA) $)_{6}\left(t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NC}\right)_{4}$ is similar to the nonplanar macrocycle proposed to be present in the pentacopper(II) compound $\mathrm{Cu}_{5}-$ (BTA) $\left.{ }^{(a c a c)}\right)_{4} 1^{17}$ By replacing tetrahedral copper(I) with planar silver(I) or gold(I), it may be possible to synthesize compounds with planar, conjugated azametallocyclic rings similar to the $\mathrm{C}_{8} \mathrm{~N}_{8}$ macrocycle in phthalocyanine. In addition, the use of divalent metal ions other than copper(II) in a template synthesis analogous to that described for this compound may lead to a broad class of new metal-nitrogen clusters.
The reaction of benzotriazole with metallic copper leads initially to copper(I) benzotriazolate ${ }^{18,19}$ which subsequently oxidizes in air. The structure described herein shows how the benzotriazolate anion, acting as a tridentate ligand, can bridge multiple sites containing both copper(I) and copper(II). It is possible that similar bonding is involved in the corrosion-resistant surface phase produced on the bulk metal.

Acknowledgment. We thank Drs. C. R. Hubbard and R. M. Doherty for assistance and helpful comments. We are grateful for support from the National Bureau of Standards Graduate Cooperative Education Program.
Supplementary Material Available: Tables of atomic positional and thermal parameters and a listing of observed and calculated structure factors (14 pages). Ordering information is given on any current masthead page.

[^2]
Evidence for a Novel Carbene-Carbene Rearrangement of a New Foiled Methylene ${ }^{1}$

Udo H. Brinker* and Lothar König

> Abteilung für Chemie der Ruhr-Universität
> 4630 Bochum, West Germany
> Received August 5,1980

While cyclopropylidene (1) undergoes a carbene-carbene rearrangement with a 1,3 -carbon shift, $\mathbf{1} \rightarrow \mathbf{2 , 2} 2$-vinylcyclobutylidene (3) surprisingly does not. ${ }^{3}$ Different methods of

[^3]
[^0]: ${ }^{\dagger}$ From a dissertation to be submitted to the Graduate School, The Catholic University of America, in partial fulfillment of the requirements for the Ph.D. degree in chemistry.
 (1) Reedijk, J.; Roelofsen, G.; Siedle, A. R.; Spek, A. L. Inorg. Chem. 1979, 18, 1947-51 and references cited therein.
 (2) Other established bonding modes for benzotriazolate are η^{1} in trans-($\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ir}(\mathrm{CO})(\mathrm{BTA})$ (Brown, L. D.; Ibers, J. A.; Siedle, A. R. Inorg. Chem. 1978, 17, 3026-30), η^{2} in (BTA $)_{6}\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}\right)_{6} \mathrm{Ni}_{3}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}$ (Meunier-Piret, J.; Piret, P.; Putzeys, J. P.; Van Meerssche, M. Acta Crystallogr., Sect. B 1976, 32, 714-7), and η^{3} in Tl(BTA) (ref 1).
 (3) This has been confirmed by the low-temperature electron spin resonance spectrum of the tert-butyl isocyanide derivative (Kokoszka, G. F., et al., to be submitted for publication).
 (4) Germain, G.; Main, P.; Woolfson, M. M. Acta Crystallogr., Sect. A 1971, 27, 368-76.

[^1]: (5) All crystallographic calculations (except MULTAN) were performed by using the XRAY76 system (Stewart, J. M.; Machin, P. A.; Dickinson, C. W.; Ammon, H. L.; Heck, H.; Flack, H. XRAY76 Technical Report TR-446, Computer Science Center, University of Maryland, College Park, Md.).
 (6) All nonhydrogen atoms were refined anisotropically. The hydrogen atoms on the benzene moieties were held fixed at calculated positions (trigonal geometry, $\mathrm{C}-\mathrm{H}=1.0 \AA$) with an isotropic $U=0.080 \AA^{2}$. Due to the apparent disorder of the methyl groups in the tert-butyl isocyanide ligand, the methyl hydrogen atoms were not included in the refinement. A difference Fourier map showed no peak greater than $0.54 \mathrm{e} \AA^{-3}$.
 (7) $R=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{\mathrm{o}}\right|$. The scattering factors used for C, Cu, and N were those of: Cromer, D. T.; Mann, J. B. Acta Crystallogr., Sect. A 1968, 24, 321-4. For H see: Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175-87. Corrections for anomalous dispersion were applied for copper $\left(\Delta f^{\prime}=0.263, \Delta f^{\prime \prime}=1.266\right)$: "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, p 149.

[^2]: (16) The two additional $\mathrm{Cu}_{4} \mathrm{~N}_{12}$ rings are easily seen when the complex is viewed down the x and y axes of the unit cell. In Figure 1 , these two $\mathrm{Cu}_{4} \mathrm{~N}_{12}$ rings form horizontal and vertical "figure eights".
 (17) acac $=2,4$-pentanedionato(1-). Marshall, J. H. Inorg. Chem. 1978, 17, 3711-3.
 (18) Siedle, A. R.; Velapoldi, R. A.; Erickson, N. Inorg. Nucl. Chem. Lett. 1978, $15,33$.
 (19) Siedle, A. R.; Velapoldi, R. A.; Erickson, N. Appl. Surf. Sci. 1979, 3, 229-35.
 (20) Johnson, C. K. ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.

[^3]: (1) Carbene Rearrangements, part 6. Part 5: Brinker, U. H.; Streu, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 631-632.
 (2) (a) Skattebø1, L. Chem. Ind. (London) 1962, 2146-2147. (b) Tetrahedron 1967, 23, 1107-1117. (c) Holm, K. H.; Skattebøl, L. Tetrahedron Lett. 1977, 2347-2350. (d) Jones, W. M.; Brinker, U. H. In "Pericyclic Reactions"; Marchand, A. P., Lehr, R. E., Eds.; Academic Press: New York, 1977; pp 159-165. (e) Schoeller, W. W.; Brinker, U. H. J. Am. Chem. Soc. 1978, 100, 6012-6017. Concerning the participation of carbenes or carbenoids in rearrangement $1 \rightarrow 2$, see: Warner, P.; Chang, S.-C. Tetrahedron Lett. 1978, 3981 -3984 and ref 3, footnote 4.

